Temporal Variations in Soil Moisture for Three Typical Vegetation Types in Inner Mongolia, Northern China
نویسندگان
چکیده
Drought and shortages of soil water are becoming extremely severe due to global climate change. A better understanding of the relationship between vegetation type and soil-moisture conditions is crucial for conserving soil water in forests and for maintaining a favorable hydrological balance in semiarid areas, such as the Saihanwula National Nature Reserve in Inner Mongolia, China. We investigated the temporal dynamics of soil moisture in this reserve to a depth of 40 cm under three types of vegetation during a period of rainwater recharge. Rainwater from most rainfalls recharged the soil water poorly below 40 cm, and the rainfall threshold for increasing the moisture content of surface soil for the three vegetations was in the order: artificial Larix spp. (AL) > Quercus mongolica (QM) > unused grassland (UG). QM had the highest mean soil moisture content (21.13%) during the monitoring period, followed by UG (16.52%) and AL (14.55%); and the lowest coefficient of variation (CV 9.6-12.5%), followed by UG (CV 10.9-18.7%) and AL (CV 13.9-21.0%). QM soil had a higher nutrient content and higher soil porosities, which were likely responsible for the higher ability of this cover to retain soil water. The relatively smaller QM trees were able to maintain soil moisture better in the study area.
منابع مشابه
Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation
Global warming, increasing CO2 concentration, and environmental disturbances affect grassland communities throughout the world. Here, we report on variations in the C3/C4 pattern of Inner Mongolian grassland derived from soil and vegetation. Soil samples from 149 sites covering an area of approximately 250 000 km within Inner Mongolia, People’s Republic of China were analyzed for the isotopic c...
متن کاملSoil moisture and evapotranspiration of different land cover types in the Loess Plateau, China
We studied the impacts of re-vegetation on soil moisture dynamics and evapotranspiration (ET) of five land cover types in the Loess Plateau in northern China. Soil moisture and temperature variations under grass (Andropogon), subshrub (Artemisia scoparia), shrub (Spiraea pubescens), plantation forest (Robinia pseudoacacia), and crop (Zea mays) vegetation were continuously monitored during the g...
متن کاملTemperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China
Intact soil cores from three adjacent sites (Site A: grazed, Site B: fenced for 4 years, and Site C: fenced for 24 years) were incubated in the laboratory to examine effects of temperature, soil moisture, and their interactions on net nitrification and N mineralization rates in the Inner Mongolia grassland of Northern China. Incubation temperature significantly influenced net nitrification and ...
متن کاملPhysiological basis of drought tolerance in potato grown under long-term water deficiency
Coping with water shortages without compromising tuber yield is a majorchallenge for potato (Solanum tuberosum L.) production in northern China. In thisstudy, we used three potato cultivars with different sensitivities to drought toevaluate the effect of long-term drought stress on morphological and physiologicalcharacteristics under field conditions during three growing seasons (2009-2011).Our...
متن کاملSpatial and temporal patterns of Holocene vegetation and climate changes in arid and semi-arid China
Pollen data from 30 sites in arid and semi-arid regions of China were reviewed to document regional patterns of Holocene vegetation and climate change and to understand the large-scale controls on these changes. Vegetation at most sites in eastern Inner Mongolia switched between forest, forest steppe, and typical steppe, showing maximum moisture conditions before 6 ka (1 ka 1⁄4 1000 cal yr BP) ...
متن کامل